UNIVERSITY OF DELHI

DEPARTMENT OF PHYSICS

UNDERGRADUATE PROGRAMME
(Courses effective from Academic Year 2015-16)

SYLLABUS OF COURSES TO BE OFFERED
Core Courses, Elective Courses & Ability Enhancement Courses

Disclaimer: The CBCS syllabus is uploaded as given by the Faculty concerned to the Academic Council. The same has been approved as it is by the Academic Council on 13.7.2015 and Executive Council on 14.7.2015. Any query may kindly be addressed to the concerned Faculty.

Undergraduate Programme Secretariat
Preamble

The University Grants Commission (UGC) has initiated several measures to bring equity, efficiency and excellence in the Higher Education System of country. The important measures taken to enhance academic standards and quality in higher education include innovation and improvements in curriculum, teaching-learning process, examination and evaluation systems, besides governance and other matters.

The UGC has formulated various regulations and guidelines from time to time to improve the higher education system and maintain minimum standards and quality across the Higher Educational Institutions (HEIs) in India. The academic reforms recommended by the UGC in the recent past have led to overall improvement in the higher education system. However, due to lot of diversity in the system of higher education, there are multiple approaches followed by universities towards examination, evaluation and grading system. While the HEIs must have the flexibility and freedom in designing the examination and evaluation methods that best fits the curriculum, syllabi and teaching-learning methods, there is a need to devise a sensible system for awarding the grades based on the performance of students. Presently the performance of the students is reported using the conventional system of marks secured in the examinations or grades or both. The conversion from marks to letter grades and the letter grades used vary widely across the HEIs in the country. This creates difficulty for the academia and the employers to understand and infer the performance of the students graduating from different universities and colleges based on grades.

The grading system is considered to be better than the conventional marks system and hence it has been followed in the top institutions in India and abroad. So it is desirable to introduce uniform grading system. This will facilitate student mobility across institutions within and across countries and also enable potential employers to assess the performance of students. To bring in the desired uniformity, in grading system and method for computing the cumulative grade point average (CGPA) based on the performance of students in the examinations, the UGC has formulated these guidelines.
CHOICE BASED CREDIT SYSTEM (CBCS):

The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Therefore, it is necessary to introduce uniform grading system in the entire higher education in India. This will benefit the students to move across institutions within India to begin with and across countries. The uniform grading system will also enable potential employers in assessing the performance of the candidates. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on student’s performance in examinations, the UGC has formulated the guidelines to be followed.

Outline of Choice Based Credit System:

1. **Core Course**: A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core course.

2. **Elective Course**: Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate’s proficiency/skill is called an Elective Course.
 2.1 **Discipline Specific Elective (DSE) Course**: Elective courses may be offered by the main discipline/subject of study is referred to as Discipline Specific Elective. The University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by main discipline/subject of study).
 2.2 **Dissertation/Project**: An elective course designed to acquire special/advanced knowledge, such as supplement study/support study to a project work, and a candidate studies such a course on his own with an advisory support by a teacher/faculty member is called dissertation/project.
 2.3 **Generic Elective (GE) Course**: An elective course chosen generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic Elective.

3. **Ability Enhancement Courses (AEC)/Competency Improvement Courses/Skill Development Courses/Foundation Course**: The Ability Enhancement (AE) Courses may be of two kinds: AE Compulsory Course (AECC) and AE Elective Course (AEEC). “AECC” courses are the courses based upon the content that leads to Knowledge enhancement. They ((i) Environmental Science, (ii) English/MIL Communication) are mandatory for all disciplines. AEEC courses are value-based and/or skill-based and are aimed at providing hands-on-training, competencies, skills, etc.
 3.1 **AE Compulsory Course (AECC)**: Environmental Science, English Communication/MIL Communication.
 3.2 **AE Elective Course (AEEC)**: These courses may be chosen from a pool of courses designed to provide value-based and/or skill-based instruction.

Project work/Dissertation is considered as a special course involving application of knowledge in solving / analyzing / exploring a real life situation / difficult problem. A Project/Dissertation work would be of 6 credits. A Project/Dissertation work may be given in lieu of a discipline specific elective paper.
Details of Courses Under Undergraduate Programme (B.Sc.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Theory+ Practical</th>
<th>Theory+Tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12X4= 48</td>
<td>12X5=60</td>
</tr>
<tr>
<td>I. Core Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 Courses from each of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 disciplines of choice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Course Practical / Tutorial*</td>
<td>12X2=24</td>
<td>12X1=12</td>
</tr>
<tr>
<td>(12 Practical/ Tutorials)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 Courses from each of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 Disciplines of choice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Elective Course</td>
<td>6x4=24</td>
<td>6X5=30</td>
</tr>
<tr>
<td>(6 Papers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two papers from each discipline of choice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>including paper of interdisciplinary nature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Course Practical / Tutorials*</td>
<td>6 X 2=12</td>
<td>6X1=6</td>
</tr>
<tr>
<td>(6 Practical / Tutorials)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Papers from each discipline of choice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>including paper of interdisciplinary nature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Optional Dissertation or project work in place of one Discipline elective paper (6 credits) in 6th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Ability Enhancement Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Ability Enhancement Compulsory</td>
<td>2 X 2=4</td>
<td>2X2=4</td>
</tr>
<tr>
<td>(2 Papers of 2 credits each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English/MIL Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ability Enhancement Elective</td>
<td>4 X 2=8</td>
<td>4 X 2=8</td>
</tr>
<tr>
<td>(Skill Based)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4 Papers of 2 credits each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit= 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit= 120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institute should evolve a system/policy about ECA/ General Interest/Hobby/Sports/NCC/NSS/related courses on its own.

wherever there is practical there will be no tutorials and vice -versa
*Wherever there is a practical there will be no tutorial & vice-versa. The size of group for practical papers is recommended to be maximum of 12 to 15 students.

Proposed scheme for CBCS in B. Sc. Program with Physics as one subject

<table>
<thead>
<tr>
<th>Semester</th>
<th>COURSE OPTED</th>
<th>COURSE NAME</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ability Enhancement Compulsory Course-I</td>
<td>English communications/Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core course-I</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-I Practical/Tutorial*</td>
<td>Mechanics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core course-II</td>
<td>DSC 2A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-III</td>
<td>DSC 3A</td>
<td>6</td>
</tr>
<tr>
<td>II</td>
<td>Ability Enhancement Compulsory Course-II</td>
<td>English communications/Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core course-IV</td>
<td>Electricity, Magnetism and EMT</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-IV Practical/Tutorial*</td>
<td>Electricity, Magnetism & EMT Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core course-V</td>
<td>DSC 2B</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-VI</td>
<td>DSC 3B</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>Core course-VII</td>
<td>Thermal Physics & Statistical Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-VII</td>
<td>Thermal Physics and Statistical</td>
<td>2</td>
</tr>
<tr>
<td>Semester</td>
<td>Course Type</td>
<td>Course Code</td>
<td>Credit</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>IV</td>
<td>Core course-VIII</td>
<td>DSC 2C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course-IX</td>
<td>DSC 3C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course -1</td>
<td>SEC-1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core course-X</td>
<td>Waves and Optics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Course-X Practical/Tutorial</td>
<td>Waves and Optics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core course-XI</td>
<td>DSC 2D</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core course-XII</td>
<td>DSC 3D</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course -2</td>
<td>SEC-2</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>Skill Enhancement Course -3</td>
<td>SEC -3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -1</td>
<td>DSE-1A (Subject 1: Physics)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -2</td>
<td>DSE-2A (Subject 2)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -3</td>
<td>DSE-3A (Subject 3)</td>
<td>6</td>
</tr>
<tr>
<td>VI</td>
<td>Skill Enhancement Course -4</td>
<td>SEC -4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -4</td>
<td>DSE-1B (Subject 1: Physics)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -5</td>
<td>DSE-2B (Subject 2)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective-6</td>
<td>DSE-3B (Subject 3)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

*Wherever there is a practical there will be no tutorial and vice-versa. The size of group for practical papers is recommended to be maximum of 12 to 15 students.

B.Sc. Program with Physics as one subject

Core papers Physics (Credit: 06 each)(CP 1-4):
1. Mechanics (4) + Lab (4)
2. Electricity and Magnetism (4) + Lab (4)
3. Thermal Physics and Statistical Mechanics (4) + Lab (4)
4. Waves and Optics (4) + Lab (4)

Discipline Specific (Physics) Elective papers (Credit: 06 each)

DSE 1, DSE 2: Choose 2 (one for each semester)

Odd Semester: (Choose any one)
1. Digital, Analog and Instrumentation (4) + Lab (4)
2. Elements of Modern Physics (4) + Lab (4)
3. Mathematical Physics (4) + Lab (4)
4. Nano Materials and Applications (4) + Lab (4)
5. Communication System (4) + Lab (4)
6. Verilog and FPGA based system design (4) + Lab (4)
7. Medical Physics (4) + Lab (4)
8. Applied Dynamics (4) + Lab (4)

Even Semester: (Choose any one)
9. Solid State Physics (4) + Lab (4)
10. Embedded System: Introduction to microcontroller (4) + Lab (4)
11. Nuclear and Particle Physics (5) + Tut (1)
12. Quantum Mechanics (4) + Lab (4)
13. Digital Signal processing (4) + Lab (4)
14. Astronomy and Astrophysics (5) + Tutorials (1)
15. Atmospheric Physics (4) + Lab (4)
16. Physics of the Earth (5) + Tutorials (1)
17. Biological physics (5) + Tutorials (1)
18. Dissertation

Skill Enhancement Course (any four) (Credit: 02 each) - SEC 1 to SEC 4
1. Physics Workshop Skills
2. Computational Physics Skills
3. Electrical circuit network Skills
4. Basic Instrumentation Skills
5. Renewable Energy and Energy harvesting
6. Mechanical Drawing
7. Radiation Safety
8. Applied Optics
9. Weather Forecasting
Semester I

PHYSICS-DSC 1 A: MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter.
(4 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (6 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (5 Lectures)

Gravitation: Newton’s Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler’s Laws (statement only). Satellite in circular orbit and applications. (8 Lectures)

Elasticity: Hooke’s law- Stress-strain diagram - Elastic moduli-Relation between elastic constants- Poisson’s Ratio-Expression for Poisson’s ratio in terms of elastic constants- Work done in stretching & work done in twisting a wire- Twisting couple on a cylinder- Determination of Rigidity modulus by static torsion- Torsional
pendulum-Determination of Rigidity modulus and moment of inertia - q, η & σ by Searles method. (8 Lectures)

Speed Theory of Relativity: Constancy of speed of light. Postulates of special theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. (7 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate.

Reference Books:
- University Physics. FW Sears, MW Zemansky & HD Young 13/e, 1986. Addison-Wesley

PHYSICS LAB: DSC 1 LAB: MECHANICS

60 Lectures

At least 06 experiments from the following:

1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
2. To determine the Height of a Building using a Sextant.
3. To determine the Moment of Inertia of a Flywheel.
4. To determine the Young's Modulus of a Wire by Optical Lever Method.
5. To determine the Modulus of Rigidity of a Wire by Maxwell’s needle.
6. To determine the Elastic Constants of a Wire by Searle’s method.
7. To determine g by Bar Pendulum.
8. To determine g by Kater’s Pendulum.
9. To determine g and velocity for a freely falling body using Digital Timing Technique
10. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g

Reference Books:
• Advanced Practical Physics for students, B.L.Flint and H.T.Worsnop, 1971, Asia Publishing House.
• Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.

Semester II

PHYSICS-DSC 2: ELECTRICITY AND MAGNETISM
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Vector Analysis: Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). (12 Lectures)

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (22 Lectures)

Magnetism:

Maxwell’s equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization.

Reference Books:
- Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education.
- D.J.Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.

PHYSICS LAB- DSC 2 LAB: ELECTRICITY AND MAGNETISM

60 Lectures

At least 06 experiments from the following:
1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
2. Ballistic Galvanometer:
 (i) Measurement of charge and current sensitivity
 (ii) Measurement of CDR
 (iii) Determine a high resistance by Leakage Method
 (iv) To determine Self Inductance of a Coil by Rayleigh’s Method.
3. To compare capacitances using De’Sauty’s bridge.
5. To study the Characteristics of a Series RC Circuit.
6. To study a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor.
7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q
8. To determine a Low Resistance by Carey Foster’s Bridge.
9. To verify the Thevenin and Norton theorem
10. To verify the Superposition, and Maximum Power Transfer Theorem

Reference Books
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.

Semester III

PHYSICS-DSC 3: THERMAL PHYSICS & STATISTICAL MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Laws of Thermodynamics:
Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between \(C_P \) and \(C_V \), Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient, Reversible and irreversible processes, Second law, Entropy, Carnot’s cycle & theorem, Entropy changes in reversible and irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero. (22 Lectures)

Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell’s relations and applications - Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for \((C_P - C_V) \), \(C_P/C_V \), TdS equations. (10 Lectures)

Kinetic Theory of Gases: Derivation of Maxwell’s law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport
Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases.

(10 Lectures)

(6 Lectures)

Statistical Mechanics: Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law, distribution of velocity, Quantum statistics, Fermi-Dirac distribution law, Bose-Einstein distribution law, comparison of three statistics.

(12 Lectures)

Reference Books:
- Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears and G.L.Salinger. 1988, Narosa

PHYSICS LAB-DSC 3 LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS

60 Lectures

AT LEAST 06 EXPERIMENTS FROM THE FOLLOWING
1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne’s constant flow method.
3. To determine Stefan’s Constant.
4. To determine the coefficient of thermal conductivity of Cu by Searle’s Apparatus.
5. To determine the Coefficient of Thermal conductivity of Cu by Angstrom’s Method.
6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton’s disc method.
7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system.

Reference Books:
- Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publishing House.

Semester IV

PHYSICS-DSC 4: WAVES AND OPTICS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Superposition of Two Collinear Harmonic oscillations: Simple harmonic motion (SHM). Linearity and Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats).
(6 Lectures)

Superposition of Two Perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses.
(2 Lectures)

Waves Motion- General: Transverse waves on a string. Travelling and standing waves on a string. Normal Modes of a string. Group velocity, Phase velocity. Plane
waves. Spherical waves, Wave intensity. (8 Lectures)

Sound: Sound waves, production and properties. Intensity and loudness of sound. Decibels. Intensity levels. musical notes. musical scale. Acoustics of buildings (General idea). (6 Lectures)

Wave Optics: Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. (3 Lectures)

Michelson’s Interferometer: Construction and working. Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index, and Visibility of fringes. (4 Lectures)

Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. (6 Lectures)

Reference Books:
- Principles of Optics, B.K. Mathur, 1995, Gopal Printing
- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young. 13/e, 1986. Addison-Wesley

PHYSICS LAB-DSC 4 LAB: WAVES AND OPTICS

60 Lectures
AT LEAST 08 EXPERIMENTS FROM THE FOLLOWING

1. To investigate the motion of coupled oscillators
2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde’s Experiment and to verify $\lambda^2 - T$ Law.
3. To study Lissajous Figures
4. Familiarization with Schuster’s focussing; determination of angle of prism.
5. To determine the Refractive Index of the Material of given Prism using Na Light.
6. To determine Dispersive Power of the Material of a given Prism using Hg Light
7. To determine the value of Cauchy Constants of a material of a prism.
8. To determine the Resolving Power of a Prism.
11. To determine the wavelength of Laser light using Diffraction grating.
12. To determine wavelength of (1) Sodium and (2) Mercury light using plane diffraction Grating

Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.

Discipline Specific (Physics) Elective
Select two papers

ODD SEMESTER (Choose one paper)

PHYSICS- DSE: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
UNIT-1: Digital Circuits
Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates. NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. (4 Lectures)

UNIT-2: Semiconductor Devices and Amplifiers:

UNIT-3: Operational Amplifiers (Black Box approach):

Sinusoidal Oscillators: Barkhausen's Criterion for Self-sustained Oscillations. Determination of Frequency of RC phase shift Oscillator. (5 Lectures)
UNIT-4: Instrumentations:
Introduction to CRO: Block Diagram of CRO. Applications of Oscilloscope: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency and Phase Difference. (3 Lectures)

Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation (6 Lectures)

Timer IC: IC 555 Pin diagram and its application as Astable and Monostable Multivibrator. (3 Lectures)

Reference Books:
- Electronic devices and circuits, S. Salivahanan and N. Suresh Kumar, 2012, Tata Mc-Graw Hill.
- Modern Electronic Instrumentation and Measurement Tech., Helfrick and Cooper, 1990, PHI Learning

PRACTICALS - DSE LAB: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTS
60 Lectures
AT LEAST 06 EXPERIMENTS FROM THE FOLLOWING
1. To measure (a) Voltage, and (b) Frequency of a periodic waveform using a CRO
2. To minimize a given (a) logic circuit and (b) Boolean equation.
3. Half adder, Full adder and 4-bit Binary Adder.
4. To design an astable multivibrator of given specifications using 555 Timer.
5. To design a monostable multivibrator of given specifications using 555 Timer.
6. To study IV characteristics of (a) PN diode, (b) Zener diode and (c) LED
7. To study the characteristics of a Transistor in CE configuration.
8. To design a CE amplifier of a given gain (mid-gain) using voltage divider bias.

9. (a) To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
 (b) To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.

11. To investigate the use of an op-amp as a Differentiator

12. To design a Wien Bridge Oscillator using an op-amp.

Reference Books:

PHYSICS- DSE: ELEMENTS OF MODERN PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Planck’s quantum, Planck’s constant and light as a collection of photons; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment.

(8 Lectures)

Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra.

(6 Lectures)

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle.

(6 Lectures)
Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension.

(11 Lectures)

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier.

(12 Lectures)

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula & binding energy.

(6 Lectures)

Radioactivity: stability of nucleus; Law of radioactive decay; Mean life and half-life; α decay; β decay - energy released, spectrum and Pauli’s prediction of neutrino; γ-ray emission.

(11 Lectures)

Reference Books:
- Six Ideas that Shaped Physics:Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill

PRACTICALS -DSE-1 LAB: ELEMENTS OF MODERN PHYSICS

60 Lectures

AT LEAST 05 EXPERIMENTS FROM THE FOLLOWING

1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
2. To determine work function of material of filament of directly heated vacuum diode
3. To determine value of Planck’s constant using LEDs of at least 4 different colours.
3. To determine the ionization potential of mercury.
4. To determine the wavelength of H-alpha emission line of Hydrogen atom.
5. To determine the absorption lines in the rotational spectrum of Iodine vapour.
6. To study the diffraction patterns of single and double slits using laser source and measure its intensity variation using Photosensor and compare with incoherent source – Na light.
7. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light.
8. To determine the value of e/m by magnetic focusing.

Reference Books:
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.

PHYSICS-DSE: MATHEMATICAL PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
The emphasis of the course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.
(6 Lectures)

(10 Lectures)

Legendre Polynomials: Rodrigues Formula, Orthogonality. Simple recurrence relations.

(16 Lectures)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions.

(4 Lectures)

(10 Lectures)

(14 Lectures)

Reference Books:
- An Introduction to Ordinary Differential Equations, E.A Coddington, 1961, PHI Learning

PRACTICALS -DSE LAB: MATHEMATICAL PHYSICS

60 Lectures

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.
- The course will consist of lectures(both theory and practical) in the Lab
- Evaluation done on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- At least two programs must be attempted from each programming section.

<table>
<thead>
<tr>
<th>Topics</th>
<th>Descriptions with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Overview</td>
<td>Computer architecture and organization, memory and Input/output devices</td>
</tr>
<tr>
<td>Basics of scientific computing</td>
<td>Binary and decimal arithmetic, Floating point</td>
</tr>
<tr>
<td>Errors and error Analysis</td>
<td>Truncation and roundoff errors, Absolute and relative errors, Floating point computations</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Review of C & C++ Programming fundamentals</td>
<td>Introduction to Programming, constants, variables and data types, operators and expressions, I/O statements, scanf and printf, cin and cout, Manipulators for data formatting, Control statements (decision making and looping statements) (if-statement, if-else statement, nested if statement, else-if statement, ternary operator, goto statement, switch statement, unconditional and conditional looping, while and do while loop, for loop, nested loops, break and continue statements). Arrays (1D and 2D) and strings, user defined functions, Structures and Unions, Idea of classes and objects</td>
</tr>
<tr>
<td>Programs: using C/C++ language</td>
<td>Sum and average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search</td>
</tr>
<tr>
<td>Random number generation</td>
<td>Area of circle, area of square, volume of sphere, value of pi</td>
</tr>
<tr>
<td>Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods</td>
<td>Solution of linear and quadratic equation, solving $a = \tan \alpha$; $I = I_0 \left(\frac{\sin \alpha}{\alpha} \right)^2$ in optics,</td>
</tr>
<tr>
<td>Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation</td>
<td>Evaluation of trigonometric functions e.g. $\sin \theta, \cos \theta, \tan \theta$ etc</td>
</tr>
<tr>
<td>Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method</td>
<td>Given Position with equidistant time data calculate velocity and acceleration and vice versa. Find the area of BH Hysteresis loop</td>
</tr>
<tr>
<td>Solution of Ordinary Differential Equations (ODE) First order Differential</td>
<td>First order differential equation</td>
</tr>
<tr>
<td>First order Differential</td>
<td>Radioactive decay, Current in RC, LC circuits with DC source</td>
</tr>
</tbody>
</table>
equation Euler, modified Euler and Runge-Kutta (RK) second and fourth order methods

- Newton’s law of cooling
- Classical equations of motion

Attempt following problems using RK 4 order method:

- Solve the coupled differential equations

\[
\frac{dx}{dt} = y + x - \frac{x^3}{3} \quad \frac{dy}{dx} = -x
\]

for four initial conditions

\[x(0) = 0, y(0) = -1, -2, -3, -4.\]

Plot \(x\) vs \(y\) for each of the four initial conditions on the same screen for \(0 \leq t \leq 15\)

- The differential equation describing the motion of a pendulum is \(\frac{d^2 \theta}{dt^2} = -\sin(\theta)\). The pendulum is released from rest at an angular displacement \(\alpha\), i.e. \(\theta(0) = \alpha\) and \(\dot{\theta}(0) = 0\).

Solve the equation for \(\alpha = 0.1, 0.5\) and \(1.0\) and plot \(\theta\) as a function of time in the range \(0 \leq t \leq 8\pi\). Also plot the analytic solution valid for small \(\theta\) \((\sin(\theta) = \theta)\)

Referred Books:

- An Introduction to computational Physics,T.Pang, 2\(^{nd}\) Edn., 2006, CambridgeUniv. Press

--

PHYSICS-DSE: Nano Materials and Applications

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.

(10 Lectures)

SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser

ELECTRON TRANSPORT: Carrier transport in nanostructures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects. (6 Lectures)

Reference books:
- C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

PRACTICALS-DSE LAB: Nano Materials and Applications 60 Lectures

At least 04 experiments from the following:
1. Synthesis of metal nanoparticles by chemical route.
2. Synthesis of semiconductor nanoparticles.
3. Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotometer.
4. XRD pattern of nanomaterials and estimation of particle size.
5. To study the effect of size on color of nanomaterials.
6. To prepare composite of CNTs with other materials.
8. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD.
9. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study transmittance spectra in UV-Visible region.
10. Prepare a thin film capacitor and measure capacitance as a function of temperature or frequency.
11. Fabricate a PN diode by diffusing Al over the surface of N-type Si and study its V-I characteristic.

Reference Books:
- C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

PHYSICS- DSE: COMMUNICATION SYSTEM
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Analog Modulation: Amplitude Modulation, modulation index and frequency spectrum. Generation of AM (Emitter Modulation), Amplitude Demodulation (diode detector), Concept of Single side band generation and detection. Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, equivalence between FM and PM, Generation of FM using VCO, FM detector (slope detector), Qualitative idea of Super heterodyne receiver.
(12 Lectures)

Analog Pulse Modulation: Channel capacity, Sampling theorem, Basic Principles-PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing. (9 Lectures)

Digital Pulse Modulation: Need for digital transmission, Pulse Code Modulation, Digital Carrier Modulation Techniques, Sampling, Quantization and Encoding. Concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Binary Phase Shift Keying (BPSK). (10 Lectures)

Introduction to Communication and Navigation systems:
Satellite Communication– Introduction, need, Geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Satellite visibility, transponders (C - Band), path loss, ground station, simplified block diagram of earth station. Uplink and downlink. (10 Lectures)

Mobile Telephony System – Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset, 2G, 3G and 4G concepts (qualitative only). (10 Lectures)

GPS navigation system (qualitative idea only) (1 Lecture)

Reference Books:
- Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.
- Communication Systems, S. Haykin, 2006, Wiley India
- Wireless communications, Andrea Goldsmith, 2015, Cambridge University Press

PHYSICSS LAB-DSE LAB: COMMUNICATION SYSTEM LAB
60 Lectures

AT LEAST 05 EXPERIMENTS FROM THE FOLLOWING
1. To design an Amplitude Modulator using Transistor
2. To study envelope detector for demodulation of AM signal
3. To study FM - Generator and Detector circuit
4. To study AM Transmitter and Receiver
5. To study FM Transmitter and Receiver
6. To study Time Division Multiplexing (TDM)
7. To study Pulse Amplitude Modulation (PAM)
8. To study Pulse Width Modulation (PWM)
9. To study Pulse Position Modulation (PPM)
10. To study ASK, PSK and FSK modulators

Reference Books:

PHYSICS-DSE: VERILOG AND FPGA BASED SYSTEM DESIGN
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Verilog HDL: Introduction to HDL. Verilog primitive operators and structural Verilog Behavioral Verilog. Design verification. Modeling of combinational and sequential circuits (including FSM and FSMD) with Verilog Design examples in
Verilog.

(20 lectures)

Reference Books:

PRACTICALS-DSE LAB: VERILOG AND FPGA LAB

60 Lectures

AT LEAST 08 EXPERIMENTS FROM FOLLOWING.

1. Write code to realize basic and derived logic gates.
2. Half adder, Full Adder using basic and derived gates.
3. Half subtractor and Full Subtractor using basic and derived gates.
5. Multiplexer (4x1) and Demultiplexer using logic gates.
6. Decoder and Encoder using logic gates.
7. Clocked D, JK and T Flip flops (with Reset inputs)
8. 3-bit Ripple counter
9. To design and study switching circuits (LED blink shift)
10. To design traffic light controller.
11. To interface a keyboard
12. To interface a LCD using FPGA
13. To interface multiplexed seven segment display.
14. To interface a stepper motor and DC motor.
15. To interface ADC 0804.

Reference Books

PHYSICS-DSE: Medical Physics
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

PHYSICS OF THE BODY-I

PHYSICS OF THE BODY-II
Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. Optical system of the body: Physics of the eye. Electrical system of the body: Physics of the nervous system, Electrical signals and information transfer. (10 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-I
X-RAYS: Electromagnetic spectrum, production of x-rays, x-ray spectra, Brehmsstrahlung, Characteristic x-ray. X-ray tubes & types: Coolidge tube, x-ray tube design, tube cooling stationary mode, Rotating anode x-ray tube, Tube rating, quality and intensity of x-ray. X-ray generator circuits, half wave and full wave rectification, filament circuit, kilo voltage circuit, types of X-Ray Generator, high frequency generator, exposure timers and switches, HT cables, HT generation. (7 Lectures)

RADIATION PHYSICS: Radiation units exposure, absorbed dose, units: rad, gray, relative biological effectiveness, effective dose, inverse square law. Interaction of radiation with matter Compton & photoelectric effect, Rem & Sievert, linear attenuation coefficient. Radiation Detectors: Thimble chamber, condenser chambers, Geiger Muller counter, Scintillation counters and Solid State detectors, ionization chamber, Dosimeters, survey methods, area monitors, TLD, Semiconductor detectors. (7 Lectures)
MEDICAL IMAGING PHYSICS: Evolution of Medical Imaging, X-ray diagnostics and imaging, Physics of nuclear magnetic resonance (NMR), NMR imaging, MRI Radiological imaging, Ultrasound imaging, Physics of Doppler with applications and modes, Vascular Doppler. Radiography: Filters, grids, cassette, X-ray film, film processing, fluoroscopy. Computed tomography scanner- principle & function, display, generations, mammography. Thyroid uptake system and Gamma camera (Only Principle, function and display).

(9 Lectures)

(9 Lectures)

(5 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-II

(5 Lectures)

Reference Books:
- Medical Physics, J.R. Cameron and J.G.Skofronick, Wiley (1978)
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
- Handbook of Physics in Diagnostic Imaging: R.S.Livingstone: B.I. Publication Pvt Ltd.
- The Physics of Radiology-H E Johns and Cunningham.

PHYSICS-DSE LAB: Medical Physics
60 Lectures
At least 05 experiments from the following:
1. Understanding the working of a manual Hg Blood Pressure monitor, Stethoscope and to measure the Blood Pressure.
2. Understanding the working of a manual optical eye-testing machine and to learn eye-testing procedure.
3. Correction of Myopia (short sightedness) using a combination of lenses on an optical bench/breadboard.
4. Correction of Hypermetropia/Hyperopia (long sightedness) using a combination of lenses on an optical bench/breadboard.
5. To learn working of Thermoluminescent dosimeter (TLD) badges and measure the background radiation.
7. Familiarization with Radiation meter and to measure background radiation.
8. Familiarization with the Use of a Vascular Doppler.

Reference Books:
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)

PHYSICS-DSE: APPLIED DYNAMICS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Introduction to Dynamical systems: Definition of a continuous first order dynamical system. The idea of phase space, flows and trajectories. Simple mechanical systems as first order dynamical systems: the free particle, particle under uniform gravity, simple and damped harmonic oscillator. Sketching flows and trajectories in phase space; sketching variables as functions of time, relating the equations and pictures to the underlying physical intuition.

Other examples of dynamical systems –

In Biology: Population models e.g. exponential growth and decay, logistic growth, species competition, predator-prey dynamics, simple genetic circuits

In Chemistry: Rate equations for chemical reactions e.g. auto catalysis, bistability

In Economics: Examples from game theory.

Illustrative examples from other disciplines.

Fixed points, attractors, stability of fixed points, basin of attraction, notion of qualitative analysis of dynamical systems, with applications to the above examples.

Computing and visualizing trajectories on the computer using a software packages.

Discrete dynamical systems. The logistic map as an example. (26 Lectures)

Introduction to Chaos and Fractals: Examples of 2-dimensional billiard, Projection of the trajectory on momentum space. Sinai Billiard and its variants. Computational visualization of trajectories in the Sinai Billiard. Randomization and ergodicity in the divergence of nearby phase space trajectories, and dependence of time scale of divergence on the size of obstacle. Electron motion in mesoscopic conductors as a chaotic billiard problem. Other examples of chaotic systems; visualization of their trajectories on the computer.

Self similarity and fractal geometry: Fractals in nature – trees, coastlines, earthquakes, etc. Need for fractal dimension to describe self-similar structure. Deterministic fractal vs. self-similar fractal structure. Fractals in dynamics – Serpinski gasket and DLA.

Fixed points. Defining chaos- aperiodic, bounded, deterministic and sensitive dependence on initial conditions. Period- Doubling route to chaos.

Nonlinear time series analysis and chaos characterization: Detecting chaos from return map. Power spectrum, autocorrelation, Lyapunov exponent, correlation dimension. (20 Lectures)

Elementary Fluid Dynamics: Importance of fluids: Fluids in the pure sciences, fluids in technology. Study of fluids: Theoretical approach, experimental fluid dynamics, computational fluid dynamics. Basic physics of fluids: The continuum
hypothesis- concept of fluid element or fluid parcel; Definition of a fluid- shear stress; Fluid properties- viscosity, thermal conductivity, mass diffusivity, other fluid properties and equation of state; Flow phenomena- flow dimensionality, steady and unsteady flows, uniform and non-uniform flows, viscous and inviscid flows, incompressible and compressible flows, laminar and turbulent flows, rotational and irrotational flows, separated and unseparated flows. Flow visualization - streamlines, pathlines, Streaklines.

(14 Lectures)

Reference Books
- Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer.
- An Introduction to Fluid Dynamics, G.K.Batchelor, Cambridge Univ. Press, 2002

PHYSICS PRACTICAL-DSE LAB: APPLIED DYNAMICS
60 Lectures

Computing and visualizing trajectories using software such as Scilab, Maple, Octave, XPPAUT based on Applied Dynamics problems like (at least 06 experiments)

1. To determine the coupling coefficient of coupled pendulums.
2. To determine the coupling coefficient of coupled oscillators.
3. To determine the coupling and damping coefficient of damped coupled oscillator.
4. To study population models e.g. exponential growth and decay, logistic growth, species competition, predator-prey dynamics, simple genetic circuits.
5. To study rate equations for chemical reactions e.g. auto catalysis, bistability.
6. To study examples from game theory.
7. Computational visualization of trajectories in the Sinai Billiard.
11. Computational visualization of fractal formations of Fractals in nature – trees, coastlines, earthquakes.

Reference Books
- Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer.
EVEN SEMESTER (CHOOSE ONE PAPER)

PHYSICS-DSE: SOLID STATE PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors. (3 Lectures)

Reference Books:
- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.

PRACTICALS-DSE LAB: SOLID STATE PHYSICS

60 Lectures

AT LEAST 06 EXPERIMENTS FROM THE FOLLOWING

1. Measurement of susceptibility of paramagnetic solution (Quinck’s Tube Method)
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR) technique.
6. To determine the refractive index of a dielectric layer using SPR technique.
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To draw the BH curve of iron using a Solenoid and determine the energy loss from Hysteresis.
9. To measure the resistivity of a semiconductor (Ge) crystal with temperature (up to 150°C) by four-probe method and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.

Reference Books
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
PHYSICS-DSE: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Embedded system introduction: Introduction to embedded systems and general purpose computer systems, architecture of embedded system, classifications, applications and purpose of embedded systems, challenges and design issues in embedded system, operational & non-operational quality attributes of embedded system, elemental description of embedded processors and microcontrollers. (6 Lectures)

Review of microprocessors: Organization of Microprocessor based system, 8085μp pin diagram and architecture, Data bus and address bus, 8085 programming model, instruction classification, subroutines, stacks and its implementation, delay subroutines, hardware and software interrupts. (4 Lectures)

8051 microcontroller: Introduction and block diagram of 8051 microcontroller, architecture of 8051, overview of 8051 family, 8051 assembly language programming, Program Counter and ROM memory map, Data types and directives, Flag bits and Program Status Word (PSW) register, Jump, loop and call instructions. (12 Lectures)

8051 I/O port programming: Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description & their functions, I/O port programming in 8051 (using Assembly Language), I/O programming: Bit manipulation. (4 Lectures)

Programming of 8051: 8051 addressing modes and accessing memory using various addressing modes, assembly language instructions using each addressing mode, arithmetic and logic instructions, 8051 programming: for time delay and I/O operations and manipulation, for arithmetic and logic operations, for ASCII and BCD conversions. (12 Lectures)

Timer and counter programming: Programming 8051 timers, counter programming. (3 Lectures)
Serial port programming with and without interrupt: Introduction to 8051 interrupts, programming timer interrupts, programming external hardware interrupts and serial communication interrupt, interrupt priority in the 8051. (6 Lectures)

Interfacing 8051 microcontroller to peripherals: Parallel and serial ADC, DAC interfacing, LCD interfacing. (2 Lectures)

Programming Embedded Systems: Structure of embedded program, infinite loop, compiling, linking and locating, downloading and debugging. (3 Lectures)

Embedded system design and development: Embedded system development environment, file types generated after cross compilation, disassembler/ decompiler, simulator, emulator and debugging, embedded product development life-cycle, trends in embedded industry. (8 Lectures)

Reference Books:
- Embedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011, Cengage Learning

PRACTICALS- DSE LAB: EMBEDDED SYSTEM:
INTRODUCTION TO MICROCONTROLLERS
60 Lectures

Following experiments (at least 060 using 8051:
1. To find that the given numbers is prime or not.
2. To find the factorial of a number.
3. Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.
4. Use one of the four ports of 8051 for O/P interfaced to eight LED’s. Simulate binary counter (8 bit) on LED’s.
5. Program to glow first four LED then next four using TIMER application.
6. Program to rotate the contents of the accumulator first right and then left.
7. Program to run a countdown from 9-0 in the seven segment LED display.
8. To interface seven segment LED display with 8051 microcontroller and display ‘HELP’ in the seven segment LED display.
9. To toggle ‘1234’ as ‘1324’ in the seven segment LED.
10. Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clockwise direction.
11. Application of embedded systems: Temperature measurement, some information on LCD display, interfacing a keyboard.

Reference Books:

PHYSICS-DSE: Nuclear and Particle Physics
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about size, mass, charge density (matter energy), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states. (10 Lectures)

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of various terms, condition of nuclear stability. Two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force. (12 Lectures)

Radioactivity decay: (a) Alpha decay: basics of α-decay processes, theory of α-emission, Gamow factor, Geiger Nuttall law, α-decay spectroscopy. (b) β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion. (10 Lectures)
Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering). (8 Lectures)

Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation, Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter. (8 Lectures)

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility). (8 Lectures)

Particle Accelerators: Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons. (5 Lectures)

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model. (14 Lectures)

Reference Books:
- Introductory nuclear Physics by Kenneth S.Krane (Wiley India Pvt. Ltd., 2008).
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

DSE: QUANTUM MECHANICS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Prerequisites: Knowledge of (1) “Mathematical Physics” and (2) “Elements of Modern Physics”

Time independent Schrödinger equation-Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to the spread of Gaussian wavepacket for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle. (12 Lectures)

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem- square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method. (10 Lectures)

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for the second order partial differential equation; angular momentum operator and quantum numbers; Radial wavefunctions from Frobenius method; Orbital angular momentum quantum numbers l and m; s, p, d,.. shells (idea only) (10 Lectures)

Reference Books:
• Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
• Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning
• Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
• Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer

DSE LAB: QUANTUM MECHANICS
60 Lectures
Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:

\[\frac{d^2\psi}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E \right] \]

Here, \(m \) is the reduced mass of electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Note that the ground state energy of hydrogen atom is \(\approx -13.6 \) eV. Take \(e = 3.795 \) (eV Å)\(^{1/2} \), \(\hbar c = 1973 \) (eV Å) and \(m = 0.511 \times 10^6 \) eV/c\(^2 \).

2. Solve the s-wave radial Schrodinger equation for an atom:

\[\frac{d^2\psi}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E \right] \]

where \(m \) is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

\[V(r) = -\frac{e^2}{r} e^{-r/\alpha} \]

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take \(e = 3.795 \) (eV Å)\(^{1/2} \), \(m = 0.511 \times 10^6 \) eV/c\(^2 \), and \(\alpha = 3 \) Å, 5 Å, 7 Å. In these units \(\hbar c = 1973 \) (eV Å). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass \(m \):

\[\frac{d^2\psi}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E \right] \]

For the anharmonic oscillator potential

\[V(r) = \frac{1}{2} kr^2 + \frac{1}{3} br^3 \]

for the ground state energy (in MeV) of the particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose \(m = 940 \) MeV/c\(^2 \), \(k = 100 \) MeV fm\(^2 \), \(b = 0, 10, 30 \) MeV fm\(^3 \). In these units, \(\hbar c = 197.3 \) MeV fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

\[\frac{d^2y}{dr^2} = A(r)y(r), \quad A(r) = \frac{2\mu}{\hbar^2} [V(r) - E] \]

where \(\mu \) is the reduced mass of the two-atom system for the Morse potential

\[V(r) = D \left(e^{-2\alpha r'} - e^{-\alpha r'} \right), \quad r' = \frac{r - r_o}{r} \]

Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take: \(m = 940 \times 10^6 \text{eV}/\text{C}^2, \ D = 0.755501 \text{eV}, \ \alpha = 1.44, \ r_o = 0.131349 \ \text{Å} \)

Some laboratory based experiments: (optional)

5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency

6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting

Reference Books:
- Elementary Numerical Analysis, K.E. Atkinson, 3rd Ed. 2007, Wiley India Edition

ELECTRONICS-DSE: DIGITAL SIGNAL PROCESSING
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the Independent Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd Signals, Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum; Graphical Method; Analytical Method, Properties of Convolution; Commutative; Associative; Distributive; Shift; Sum Property System Response to Periodic Inputs, Relationship Between LTI System Properties and the Impulse Response; Causality; Stability; Invertibility, Unit Step Response. (10 Lectures)

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-Time Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting; Differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property. The \(z \)-Transform: Bilateral (Two-Sided) \(z \)-Transform, Inverse \(z \)-Transform, Relationship Between \(z \)-Transform and Discrete-Time Fourier Transform, \(z \)-plane, Region-of-Convergence; Properties of ROC,
Properties; Time Reversal; Differentiation in the \(z \)-Domain; Power Series Expansion Method (or Long Division Method); Analysis and Characterization of LTI Systems; Transfer Function and Difference-Equation System. Solving Difference Equations.

(15 Lectures)

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR Digital Filters, Simple IIR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.

(5 Lectures)

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting; Circular Time Reversal; Multiplication Property; Parseval’s Relation, Linear Convolution Using the DFT (Linear Convolution Using Circular Convolution), Circular Convolution as Linear Convolution with aliasing.

(10 Lectures)

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity Properties of the Twiddle factor (\(WN \)), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm; Decimation-In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms.

(5 Lectures)

Realization of Digital Filters: Non Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures (Transposed Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR systems; Direct-Form I.

Finite Impulse Response Digital Filter: Advantages and Disadvantages of Digital Filters, Types of Digital Filters: FIR and IIR Filters; Difference Between FIR and IIR Filters, Desirability of Linear-Phase Filters, Frequency Response of Linear-Phase FIR Filters, Impulse Responses of Ideal Filters, Windowing Method; Rectangular; Triangular; Kaiser Window, FIR Digital Differentiators.

Infinite Impulse Response Digital Filter: Design of IIR Filters from Analog Filters, IIR Filter Design by Approximation of Derivatives, Backward Difference Algorithm, Impulse Invariance Method.

(15 Lectures)

Reference Books:
- Digital Signal Processing, Tarun Kumar Rawat, 2015, Oxford University Press, India
PRACTICAL-DSE LAB: DIGITAL SIGNAL PROCESSING LAB
60 Lectures

At least 06 experiments from the following using Scilab/Matlab. Introduction to Numerical computation software Scilab/Matlab be introduced in the lab.

1. Write a program to generate and plot the following sequences: (a) Unit sample sequence $\delta(n)$, (b) unit step sequence $u(n)$, (c) ramp sequence $r(n)$, (d) real valued exponential sequence $x(n) = (0.8)^n u(n)$ for $0 \leq n \leq 50$.

2. Write a program to compute the convolution sum of a rectangle signal (or gate function) with itself for $N=5$
\[x(n) = \text{rect} \left(\frac{n}{2N} \right) = \Pi \left(\frac{n}{2N} \right) = \begin{cases} 1 & -N \leq n \leq N \\ 0 & \text{otherwise} \end{cases} \]

3. An LTI system is specified by the difference equation
\[y(n) = 0.8y(n-1) + x(n) \]
(a) Determine $H(e^{j\omega})$
(b) Calculate and plot the steady state response $y_{ss}(n)$ to
\[x(n) = \cos(0.5\pi n) u(n) \]

4. Given a casual system
\[y(n) = 0.9y(n-1) + x(n) \]
(a) Find $H(z)$ and sketch its pole-zero plot
(b) Plot the frequency response $|H(e^{j\omega})|$ and $\angle H(e^{j\omega})$

5. Design a digital filter to eliminate the lower frequency sinusoid of $x(t) = \sin 7t + \sin 200t$. The sampling frequency is $f_s = 500 \text{ Hz}$. Plot its pole zero diagram, magnitude response, input and output of the filter.

6. Let $x(n)$ be a 4-point sequence:
\[x(n) = \begin{cases} 1,1,1,1 & \text{for } 0 \leq n \leq 3 \\ 0 & \text{otherwise} \end{cases} \]
Compute the DTFT $X(e^{j\omega})$ and plot its magnitude
(a) Compute and plot the 4 point DFT of $x(n)$
(b) Compute and plot the 8 point DFT of $x(n)$ (by appending 4 zeros)
(c) Compute and plot the 16 point DFT of $x(n)$ (by appending 12 zeros)

7. Let $x(n)$ and $h(n)$ be the two 4-point sequences,

$$x(n) = \{1,2,2,1\}$$

$$h(n) = \{1,-1,-1,1\}$$

Write a program to compute their linear convolution using circular convolution.

8. Using a rectangular window, design a FIR low-pass filter with a pass-band gain of unity, cut off frequency of 1000 Hz and working at a sampling frequency of 5 KHz. Take the length of the impulse response as 17.

9. Design an FIR filter to meet the following specifications:
 passband edge $F_p = 2 KHz$
 stopband edge $F_s = 5 KHz$
 Passband attenuation $A_p = 2 dB$
 Stopband attenuation $A_s = 42 dB$
 Sampling frequency $F_s = 20 KHz$

10. The frequency response of a linear phase digital differentiator is given by

$$H_d(e^{j\omega}) = j\omega e^{-j\pi\omega} \quad |\omega| \leq \pi$$

Using a Hamming window of length $M = 21$, design a digital FIR differentiator. Plot the amplitude response.

Reference Books:
- Digital Signal Processing, Tarun Kumar Rawat, Oxford University Press, India
- Getting started with MATLAB, Rudra Pratap, 2010, Oxford University Press.

--

PHYSICS-DSE: Astronomy and Astrophysics
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

Astronomical Scales: Astronomical Distance, Mass and Time, Scales, Brightness,

(24 Lectures)

Astronomical techniques: Basic Optical Definitions for Astronomy (Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and Their Use with Telescopes (Types of Detectors, detection Limits with Telescopes).

Physical principles: Gravitation in Astrophysics (Virial Theorem, Newton versus Einstein), Systems in Thermodynamic Equilibrium.

(9 Lectures)

Stellar spectra and classification Structure (Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification)

(11 Lectures)

(14 Lectures)

(7 Lectures)
Large scale structure & expanding universe: Cosmic Distance Ladder (An Example from Terrestrial Physics, Distance Measurement using Cepheid Variables), Hubble’s Law (Distance- Velocity Relation), Clusters of Galaxies (Virial theorem and Dark Matter). (10 Lectures)

Reference Books:
- Fundamental of Astronomy (Fourth Edition), H. Karttunen et al. Springer
- Textbook of Astronomy and Astrophysics with elements of cosmology, V.B. Bhatia, Narosa Publication.

--

PHYSICS-DSE: Atmospheric Physics
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

(12 Lectures)

Atmospheric Dynamics: Scale analysis, Fundamental forces, Basic conservation laws, The Vectorial form of the momentum equation in rotating coordinate system, scale analysis of equation of motion, Applications of the basic equations, Circulations and vorticity, Atmospheric oscillations, Quasi biennial oscillation, annual and semi-annual oscillations, Mesoscale circulations, The general circulations, Tropical dynamics.

(12 Lectures)

Atmospheric Waves: Surface water waves, wave dispersion, acoustic waves, buoyancy waves, propagation of atmospheric gravity waves (AGWs) in a
nonhomogeneous medium, Lamb wave, Rossby waves and its propagation in three dimensions and in sheared flow, wave absorption, non-linear consideration

Lectures

Atmospheric Radar and Lidar: Radar equation and return signal, Signal processing and detection, Various type of atmospheric radars, Application of radars to study atmospheric phenomena, Lidar and its applications, Application of Lidar to study atmospheric phenomenon. Data analysis tools and techniques. (12 Lectures)

Reference Books:
- An Introduction to dynamic meteorology – James R Holton; Academic Press, 2004

PRACTICALS-DSE LAB: Atmospheric Physics
60 Lectures

Scilab/C++ based simulations experiments based on Atmospheric Physics problems like (at least 05 experiments)
1. Numerical Simulation for atmospheric waves using dispersion relations
 (a) Atmospheric gravity waves (AGW)
 (b) Kelvin waves
 (c) Rossby waves, and mountain waves

2. Offline and online processing of radar data
 (a) VHF radar,
 (b) X-band radar, and
 (c) UHF radar

3. Offline and online processing of LIDAR data
4. Radiosonde data and its interpretation in terms of atmospheric parameters using vertical profiles in different regions of the globe.

5. Handling of satellite data and plotting of atmospheric parameters using radio occultation technique

6. Time series analysis of temperature using long term data over metropolitan cities in India – an approach to understand the climate change

Reference Books:
- An Introduction to dynamic meteorology – James R Holton; Academic Press, 2004

PHYSICS-DSE: Physics of Earth
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

1. The Earth and the Universe:
 (17 Lectures)
 (a) Origin of universe, creation of elements and earth. A Holistic understanding of our dynamic planet through Astronomy, Geology, Meteorology and Oceanography. Introduction to various branches of Earth Sciences.
 (b) General characteristics and origin of the Universe. The Milky Way galaxy, solar system, Earth’s orbit and spin, the Moon’s orbit and spin. The terrestrial and Jovian planets. Meteorites & Asteroids. Earth in the Solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age.
 (c) Energy and particle fluxes incident on the Earth.
 (d) The Cosmic Microwave Background.

2. Structure:
 (18 Lectures)
 (a) The Solid Earth: Mass, dimensions, shape and topography, internal structure, magnetic field, geothermal energy. How do we learn about Earth’s interior?
 (b) The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. River systems.
 (c) The Atmosphere: variation of temperature, density and composition with altitude, clouds.
 (d) The Cryosphere: Polar caps and ice sheets. Mountain glaciers.

3. **Dynamical Processes:**
 (18 Lectures)

 Climate:
 i. Earth’s temperature and greenhouse effect.
 ii. Paleoclimate and recent climate changes.
 iii. The Indian monsoon system.

 (d) Biosphere: Water cycle, Carbon cycle, Nitrogen cycle, Phosphorous cycle. The role of cycles in maintaining a steady state.

4. **Evolution:**
 (18 Lectures)
 Nature of stratigraphic records, Standard stratigraphic time scale and introduction to the concept of time in geological studies. Introduction to geochronological methods in their application in geological studies. History of development in concepts of uniformitarianism, catastrophism and neptunism. Law of superposition and faunal succession. Introduction to the geology and geomorphology of Indian subcontinent.
 1. Time line of major geological and biological events.
 3. Role of the biosphere in shaping the environment.

5. **Disturbing the Earth – Contemporary dilemmas**
 (4 Lectures)
 (a) Human population growth.
 (b) Atmosphere: Green house gas emissions, climate change, air pollution.
 (c) Hydrosphere: Fresh water depletion.
 (d) Geosphere: Chemical effluents, nuclear waste.

Reference Books:

PHYSICS-DSE: Biological Physics
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

Overview: (9 Lectures)

Molecules of life: (22 Lectures)
Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling.
Typical populations of molecules of various types present in cells, their rates of production and turnover. Energy required to make a bacterial cell.
Simplified mathematical models of transcription and translation, small genetic circuits and signaling pathways. Random walks and applications to biology. Mathematical models to be studied analytically and computationally.

The complexity of life: (30 Lectures)

At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems.

Evolution: (14 Lectures)
The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution. The concept of genotype-phenotype map. Examples.

Reference Books:
- Physics in Molecular Biology; Kim Sneppen & Giovanni Zocchi (CUP 2005)
- An Introduction to Systems Biology; Uri Alon (Chapman and Hall/CRC, Special Indian Edition, 2013)
- Evolution; M. Ridley (Blackwell Publishers, 2009, 3rd edition)

Skill Enhancement Course(any four) (Credit: 02 each)- SEC1 to SEC4

PHYSICS WORKSHOP SKILL
(Credits: 02)

30 Lectures
The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode

Introduction: Measuring units. conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)

Introduction to prime movers: Mechanism, gear system, wheel, Fixing of gears with motor axel. Lever mechanism, Lifting of heavy weight using lever. braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment. (6 Lectures)

Reference Books:
- Performance and design of AC machines – M.G. Say, ELBS Edn.

COMPUTATIONAL PHYSICS
(Credits: 02)
Theory: 30 Lectures

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics and Science.
- Highlights the use of computational methods to solve physical problems
- Use of computer language as a tool in solving physics/science problems
- Course will consist of hands on training on the Problem solving on Computers.

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. Algorithms and Flowcharts:
Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal. (4 Lectures)

Control Statements: Types of Logic(Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements, Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:
1. Exercises on syntax on usage of FORTRAN
2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.
3. To print out all natural even/odd numbers between given limits.
4. To find maximum, minimum and range of a given set of numbers.
5. Calculating Euler number using exp(x) series evaluated at x=1 (6 Lectures)

Scientific word processing: Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages. Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns-Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List
making environments, Fonts, Picture environment and colors, errors. (6 Lectures)

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. Importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot

Hands on exercises:
1. To compile a frequency distribution and evaluate mean, standard deviation etc.
2. To evaluate sum of finite series and the area under a curve.
3. To find the product of two matrices
4. To find a set of prime numbers and Fibonacci series.
5. To write program to open a file and generate data for plotting using Gnuplot.
6. Plotting trajectory of a projectile projected horizontally.
7. Plotting trajectory of a projectile projected making an angle with the horizontally.
8. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an eps file and as a pdf file.
9. To find the roots of a quadratic equation.
10. Motion of a projectile using simulation and plot the output for visualization.
11. Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
12. Motion of particle in a central force field and plot the output for visualization. (9 Lectures)

Reference Books:
- Computer Programming in Fortran 77”, V. Rajaraman (Publisher:PHI).
- Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)

ELECTRICAL CIRCUIT NETWORK SKILLS
(Credits: 02)
Theory: 30 Lectures
The aim of this course is to enable the students to design and trouble shoots the electrical circuits, networks and appliances through hands-on mode

(3 Lectures)

(4 Lectures)

(4 Lectures)

(3 Lectures)

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor.

(4 Lectures)

Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources

(3 Lectures)

(4 Lectures)

Reference Books:
- A text book in Electrical Technology - B L Theraja - S Chand & Co.
- A text book of Electrical Technology - A K Theraja
- Performance and design of AC machines - M G Say ELBS Edn.

BASIC INSTRUMENTATION SKILLS
(Credits: 02)

Theory: 30 Lectures
This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. **Multimeter:** Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.
(4 Lectures)

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/Multimeter and their significance. **AC millivoltmeter:** Type of AC millivoltmeters. Block diagram ac millivoltmeter, specifications and their significance.
(4 Lectures)

Oscilloscope: Block diagram of basic CRO. CRT, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence. Time base operation, synchronization. Front panel controls. Specifications of CRO and their significance.
(6 Lectures)

Use of CRO for the measurement of voltage (dc and ac), frequency and time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: principle of working.
(3 Lectures)

Signal and pulse Generators: Block diagram, explanation and specifications of low frequency signal generator and pulse generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.
(4 Lectures)
Impedance Bridges: Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q- Meter. Digital LCR bridges. (3 Lectures)

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. (3 Lectures)

The test of lab skills will be of the following test items:
1. Use of an oscilloscope.
2. Oscilloscope as a versatile measuring device.
3. Circuit tracing of Laboratory electronic equipment,
4. Use of Digital multimeter/VTVM for measuring voltages
5. Circuit tracing of Laboratory electronic equipment,
7. Study the layout of receiver circuit.
8. Trouble shooting a circuit
9. Balancing of bridges

Laboratory Exercises:
1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
3. To measure Q of a coil and its dependence on frequency, using a Q- meter.
4. Measurement of voltage, frequency, time period and phase using Oscilloscope.
5. Measurement of time period, frequency, average period using universal counter/ frequency counter.

Open Ended Experiments:
1. Using a Dual Trace Oscilloscope
2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:
- A text book in Electrical Technology - B L Theraja - S Chand and Co.
- Performance and design of AC machines - M G Say ELBS Edn.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill

RENEWABLE ENERGY AND ENERGY HARVESTING
(Credits: 02)
Theory: 30 Lectures
The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. (3 Lectures)

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. (6 Lectures)

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. (3 Lectures)

Geothermal Energy: Geothermal Resources, Geothermal Technologies. (2 Lectures)

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources. (2 Lectures)

Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power (4 Lectures)

Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications (2 Lectures)

Carbon captured technologies, cell, batteries, power consumption (2 Lectures)

Environmental issues and Renewable sources of energy, sustainability. (1 Lecture)

Demonstrations and Experiments
1. Demonstration of Training modules on Solar energy, wind energy, etc.
2. Conversion of vibration to voltage using piezoelectric materials
3. Conversion of thermal energy into voltage using thermoelectric modules.

Reference Books:
- Non-conventional energy sources, B.H. Khan, McGraw Hill
- Renewable Energy, 3rd Edition,
- J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).

MECHANICAL DRAWING
(Credits: 02)
Theory: 30 Lectures

Projections: Straight lines, planes and solids. Development of surfaces of right and oblique solids. Section of solids. (6 Lectures)

Object Projections: Orthographic projection. Interpenetration and intersection of solids. Isometric and oblique parallel projection of solids. (4 Lectures)

CAD Drawing: Introduction to CAD and Auto CAD, precision drawing and drawing aids, Geometric shapes, Demonstrating CAD- specific skills (graphical user interface. Create, retrieve, edit, and use symbol libraries. Use inquiry commands to extract drawing data). Control entity properties. Demonstrating basic skills to produce 2-D and 3-D drawings. 3D modeling with Auto CAD (surfaces and solids), 3D modeling with sketch up, annotating in Auto CAD with text and hatching, layers, templates and design center, advanced plotting (layouts, viewports), office standards, dimensioning, internet and collaboration, Blocks, Drafting symbols, attributes, extracting data. basic printing, editing tools, Plot/Print drawing to appropriate scale. (16 Lectures)

Reference Books:
- Engineering Graphic, K. Venugopal, and V. Raja Prabhu, New Age International

RADIATION SAFETY
(Credits: 02)
Theory: 30 Lectures
The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments listed below the course are to be done in continuation of the topics

Basics of Atomic and Nuclear Physics: Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron, The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission. (6 Lectures)

Radiation detection and monitoring devices: Radiation Quantities and Units: Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC). Radiation detection: Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter), Scintillation Detectors (Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermo luminescent Dosimetry. (7 Lectures)

Application of nuclear techniques: Application in medical science (e.g., MRI, PET, Projection Imaging Gamma Camera, radiation therapy), Archaeology, Art, Crime detection, Mining and oil.Industrial Uses: Tracing, Gauging, Material Modification, Sterization, Food preservation. (5 Lectures)
Experiments:
1. Study the background radiation levels using Radiation meter
2. Study of characteristics of GM tube and determination of operating voltage and plateau length using background radiation as source (without commercial source).
4. Study of radiation in various materials (e.g. KSO4etc.). Investigation of possible radiation in different routine materials by operating GM counter at operating voltage.
6. Detection of α particles using reference source & determining its half life using spark counter
7. Gamma spectrum of Gas Light mantle (Source of Thorium)

Reference Books:
2. G.F.Knoll, Radiation detection and measurements
3. Thermoluminescence Dosimetry, Mcknlay, A.F., Bristol, Adam Hilger (Medical Physics Hand book 5)

--

APPLIED OPTICS
(Credits: 02)
THEORY: 30 Lectures

Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

<table>
<thead>
<tr>
<th>(i) Sources and Detectors</th>
<th>(9 Periods)</th>
</tr>
</thead>
</table>

Experiments on Lasers:

a. Determination of the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser.
b. To find the width of the wire or width of the slit using diffraction pattern
obtained by a He-Ne or solid state laser.
c. To find the polarization angle of laser light using polarizer and analyzer
d. Thermal expansion of quartz using laser

Experiments on Semiconductor Sources and Detectors:
a. V-I characteristics of LED
b. Study the characteristics of solid state laser
c. Study the characteristics of LDR
d. Photovoltaic Cell
e. Characteristics of IR sensor

(ii) Fourier Optics (6 Periods)
Concept of Spatial frequency filtering, Fourier transforming property of a thin lens

Experiments on Fourier Optics:
a. Fourier optic and image processing
 1. Optical image addition/subtraction
 2. Optical image differentiation
 3. Fourier optical filtering
 4. Construction of an optical 4f system
b. Fourier Transform Spectroscopy
Fourier Transform Spectroscopy (FTS) is a powerful method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry and forensic science.

Experiment:
To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

(iii) Holography (6 Periods)
Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition

Experiments on Holography and interferometry:
1. Recording and reconstructing holograms
2. Constructing a Michelson interferometer or a Fabry Perot interferometer
3. Measuring the refractive index of air
4. Constructing a Sagnac interferometer
5. Constructing a Mach-Zehnder interferometer
6. White light Hologram

(iv) Photonics: Fibre Optics (9 Periods)
Optical fibres and their properties, Principal of light propagation through a fibre, Thenumerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating

Experiments on Photonics: Fibre Optics
a. To measure the numerical aperture of an optical fibre
b. To study the variation of the bending loss in a multimode fibre
c. To determine the mode field diameter (MFD) of fundamental mode in a
single-mode fibre by measurements of its far field Gaussian pattern

d. To measure the near field intensity profile of a fibre and study its refractive index profile

e. To determine the power loss at a splice between two multimode fibre

Reference Books:

WEATHER FORECASTING
(Credits: 02)
Theory: 30 Lectures
The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques

Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics. (9 Periods)

Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. (4 Periods)

Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes. (3 Periods)

Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. (6 Periods)

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts. (8 Periods)
Demonstrations and Experiments:
1. Study of synoptic charts & weather reports, working principle of weather station.
2. Processing and analysis of weather data:
 (a) To calculate the sunniest time of the year.
 (b) To study the variation of rainfall amount and intensity by wind direction.
 (c) To observe the sunniest/driest day of the week.
 (d) To examine the maximum and minimum temperature throughout the year.
 (e) To evaluate the relative humidity of the day.
 (f) To examine the rainfall amount month wise.
4. Formats and elements in different types of weather forecasts/ warning (both aviation and non aviation)

Reference books: